Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 70: 190-203, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28800931

RESUMO

Much of the current research on longevity focuses on the aging process within a single species. Several molecular players (e.g. IGF1 and MTOR), pharmacological compounds (e.g. rapamycin and metformin), and dietary approaches (e.g. calorie restriction and methionine restriction) have been shown to be important in regulating and modestly extending lifespan in model organisms. On the other hand, natural lifespan varies much more significantly across species. Within mammals alone, maximum lifespan differs more than 100 fold, but the underlying regulatory mechanisms remain poorly understood. Recent comparative studies are beginning to shed light on the molecular signatures associated with exceptional longevity. These include genome sequencing of microbats, naked mole rat, blind mole rat, bowhead whale and African turquoise killifish, and comparative analyses of gene expression, metabolites, lipids and ions across multiple mammalian species. Together, they point towards several putative strategies for lifespan regulation and cancer resistance, as well as the pathways and metabolites associated with longevity variation. In particular, longevity may be achieved by both lineage-specific adaptations and common mechanisms that apply across the species. Comparing the resulting cross-species molecular signatures with the within-species lifespan extension strategies will improve our understanding of mechanisms of longevity control and provide a starting point for novel and effective interventions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Longevidade/genética , Metaboloma , Transcriptoma , Animais , Baleia Franca/genética , Baleia Franca/crescimento & desenvolvimento , Baleia Franca/metabolismo , Restrição Calórica , Quirópteros/genética , Quirópteros/crescimento & desenvolvimento , Quirópteros/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Peixes Listrados/genética , Peixes Listrados/crescimento & desenvolvimento , Peixes Listrados/metabolismo , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Metionina/deficiência , Ratos-Toupeira/genética , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
PLoS One ; 11(6): e0156753, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333180

RESUMO

The evolution of baleen constituted a major evolutionary change that made it possible for baleen whales to reach enormous body sizes while filter feeding on tiny organisms and migrating over tremendous distances. Bowhead whales (Balaena mysticetus) live in the Arctic where the annual cycle of increasing and decreasing ice cover affects their habitat, prey, and migration. During the nursing period, bowheads grow rapidly; but between weaning and approximately year 5, bowhead whales display sustained baleen and head growth while limiting growth in the rest of their bodies. During this period, they withdraw resources from the skeleton, in particular the ribs, which may lose 40% of bone mass. Such dramatic changes in bones of immature mammals are rare, although fossil cetaceans between 40 and 50 million years ago show an array of rib specializations that include bone loss and are usually interpreted as related to buoyancy control.


Assuntos
Reabsorção Óssea/patologia , Baleia Franca/crescimento & desenvolvimento , Características de História de Vida , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA